revanalyzer.metrics.pd.PD0
- class revanalyzer.metrics.pd.PD0(vectorizer, n_threads=1, show_time=False)
Bases:
BasicPDMetric
Class describing metric PD of rank 0.
Input:
vectorizer (SimpleBinningVectorizer, PersistenceImageVectorizer, LandscapeVectorizer or SilhouetteVectorizer object): vectorizer to be used for PD metric;
n_threads (int): number of threads used for data generation;
show_time (bool): flag to monitor time cost for large images.
Methods
Generates the PD of rank 0 for a specific subcube.
Read the metric data generated for a specific subsample.
Vizualize the PD of rank 0 for a specific subcube.
Vectorize the vector metric values for a given pair of subsamples using the method of vectorizer.
- generate(cut, cut_name, outputdir, gendatadir=None)
Generates the PD of rank 0 for a specific subcube.
Input:
cut (numpy.ndarray): subsample;
cut_name (str): name of subcube;
outputdir (str): output folder.
- read(inputdir, step, cut_id)
Read the metric data generated for a specific subsample.
Input:
inputdir (str): path to the folder containing image;
step (int): subsamples selection step;
cut_id (int: 0,..8): cut index.
Output:
metric value (float or np.array(dtype=’float’)).
- show(inputdir, cut_step, cut_id)
Vizualize the PD of rank 0 for a specific subcube.
Input:
inputdir (str): path to the folder containing generated metric data for subcubes;
cut_step (int): subsamples selection step;
cut_id (int: 0,..8): cut index.
- vectorize(v1, v2)
Vectorize the vector metric values for a given pair of subsamples using the method of vectorizer.
Input:
v1 (list(dtype = float)): data for the first subsample;
v2 (list(dtype = float)): data for the second subsample.
Output:
(list(dtype = float), list(dtype = float), float) - a tuple, in which the first two elements are vectorized metric values for a given pair of subsamples, and the last one is the normalized distance between these vectors.