revanalyzer.metrics.pd.BasicPDMetric
- class revanalyzer.metrics.pd.BasicPDMetric(vectorizer, n_threads, show_time)
Bases:
BasicMetric
Base class of PD-based metrics. (Don’t use it directly but derive from it).
Input:
vectorizer (SimpleBinningVectorizer, PersistenceImageVectorizer, LandscapeVectorizer or SilhouetteVectorizer object): vectorizer to be used for PD metric.
n_threads (int): number of threads used for data generation;
show_time (bool): flag to monitor time cost for large images.
Methods
Generates PD metric for a specific subsample.
Read the metric data generated for a specific subsample.
Transforms generated PD data to the convenient fomat for the following visualization in subclasses.
Vectorize the vector metric values for a given pair of subsamples using the method of vectorizer.
- generate(cut, cut_name, outputdir, gendatadir=None)
Generates PD metric for a specific subsample.
Input:
cut (numpy.ndarray): 3D array representing a subsample;
cut_name (str): name of subsample;
outputdir (str): output folder;
- read(inputdir, step, cut_id)
Read the metric data generated for a specific subsample.
Input:
inputdir (str): path to the folder containing image;
step (int): subsamples selection step;
cut_id (int: 0,..8): cut index.
Output:
metric value (float or np.array(dtype=’float’)).
- show(inputdir, step, cut_id, title)
Transforms generated PD data to the convenient fomat for the following visualization in subclasses.
Input:
inputdir (str): path to the folder containing generated metric data for subsamples;
step (int): subsamples selection step;
cut_id (int: 0,..8): cut index;
title (str): image title.
- vectorize(v1, v2)
Vectorize the vector metric values for a given pair of subsamples using the method of vectorizer.
Input:
v1 (list(dtype = float)): data for the first subsample;
v2 (list(dtype = float)): data for the second subsample.
Output:
(list(dtype = float), list(dtype = float), float) - a tuple, in which the first two elements are vectorized metric values for a given pair of subsamples, and the last one is the normalized distance between these vectors.