revanalyzer.vectorizers.silhouette_vectorizer.SilhouetteVectorizer
- class revanalyzer.vectorizers.silhouette_vectorizer.SilhouetteVectorizer(resolution, n=1, norm=2)
Bases:
BasicVectorizer
Class describing persistence silhouette vectorizer.
Input:
resolution (int): number of samples for the weighted average;
n (int): power parameter in weighted funtion (d-b)^n, default = 1;
norm (int): Norm of vectors used in REV analysis. The same, as parameter ‘ord’ in numpy.linalg.norm function, default: 2.
Methods
Vectorize the vector metric values for a given pair of subsamples.
- vectorize(v1, v2)
Vectorize the vector metric values for a given pair of subsamples.
Input:
v1 (list(dtype = float)): data for the first subsample;
v2 (list(dtype = float)): data for the second subsample.
Output:
(list(dtype = float), list(dtype = float), float): a tuple, in which the first two elements are vectorized metric values for a given pair of subsamples, and the last one is the normalized distance between these vectors.