revanalyzer.metrics.pnm.MeanConnectivity
- class revanalyzer.metrics.pnm.MeanConnectivity(n_threads=1, resolution=1.0, show_time=False)
- Bases: - BasicPNMMetric- Class describing mean connectivity metric. - Input: - n_threads (int): number of threads used for data generation, default: 1; - resolution (float): resolution of studied sample, default: 1; - show_time (bool): Added to monitor time cost for large images, default: False. - Methods - Generates mean connectivity for a specific subsample. - Read the metric data generated for a specific subsample. - Vizualize the vector metric for a specific subsample. - Vectorize the vector metric values for a given pair of subsample. - generate(cut, cut_name, outputdir, gendatadir)
- Generates mean connectivity for a specific subsample. - Input: - cut (numpy.ndarray): 3D array representing a subsample; - cut_name (str): name of subsample; - outputdir (str): output folder; - gendatadir (str): folder with generated PNM data. 
 - read(inputdir, step, cut_id)
- Read the metric data generated for a specific subsample. - Input: - inputdir (str): path to the folder containing image; - step (int): subsamples selection step; - cut_id (int: 0,..8): cut index. - Output: - metric value (float or np.array(dtype=’float’)). 
 - show(inputdir, step, cut_id, nbins, metric_name)
- Vizualize the vector metric for a specific subsample. - Input: - inputdir (str): path to the folder containing generated metric data for subcubes; - step (int): subsamples selection step; - cut_id (int: 0,..8): cut index; - nbins (int): number of bins in histogram; - metric_name(str): name of metric. 
 - vectorize(v1, v2)
- Vectorize the vector metric values for a given pair of subsample. Makes normalization to voxels and calls the vectorizer function. - Input: - v1 (list(dtype = float)): data for the first subsample; - v2 (list(dtype = float)): data for the second subsample. - Output: - (list(dtype = float), list(dtype = float), float) - a tuple, in which the first two elements are vectorized metric values for a given pair of subsamples, and the last one is the normalized distance between these vectors.