revanalyzer.metrics.cf.C2
- class revanalyzer.metrics.cf.C2(vectorizer, n_threads=1, show_time=False, normalize=True)
- Bases: - BasicCFMetric- Class describing metric C2. - Input: - vectorizer (CFVectorizer): vectorizer to be used for CF metric; - n_threads (int): number of threads used for data generation, default: 1; - show_time (bool): flag to monitor time cost for large images, default: False; - normalize (bool): flag to control normalization of CF. If True, CF are normalized to satisfy the condition CF(0) = 1. See the details in Karsanina et al. (2021). Compressing soil structural information into parameterized correlation functions. European Journal of Soil Science, 72(2), 561-577. Default: True. - Methods - Generates the correlation function C2 for a specific subsample. - Read the metric data generated for a specific subsample. - Vizualize the correlation function C2 for a specific subsample. - Vectorize the vector metric values for a given pair of subsamples. - generate(cut, cut_name, outputdir, gendatadir=None)
- Generates the correlation function C2 for a specific subsample. - Input: - cut (numpy.ndarray): 3D array representing a subsample; - cut_name (str): name of subsample; - outputdir (str): output folder. 
 - read(inputdir, step, cut_id)
- Read the metric data generated for a specific subsample. - Input: - inputdir (str): path to the folder containing image; - step (int): subsamples selection step; - cut_id (int: 0,..8): cut index. - Output: - metric value (float or np.array(dtype=’float’)). 
 - show(inputdir, step, cut_id)
- Vizualize the correlation function C2 for a specific subsample. - Input: - inputdir (str): path to the folder containing generated metric data for subsamples; - step (int): subsamples selection step; - cut_id (int: 0,..8): cut index. 
 - vectorize(v1, v2)
- Vectorize the vector metric values for a given pair of subsamples. - Input: - v1 (list(dtype = float)): data for the first subsample; - v2 (list(dtype = float)): data for the second subsample; - Output: - Depends on the chosen mode in CFVectorizer. - If mode = ‘all’: - (list(dtype = float), list(dtype = float), float) - a tuple, in which the first two elements are vectorized metric values for a given pair of subsamples, and the last one is the normalized distance between these vectors. - If mode = ‘max: - (list(list(dtype = float)), list(list(dtype = float)), list(float)) - a tuple, in which in which the first two elements are vectorized metric values in ‘x’, ‘y’ and ‘z’ directions for a given pair of subsamples, and the last one is a list of normalized distances between these vectors.